Is Gauss Quadrature Better than Clenshaw-Curtis?
نویسنده
چکیده
We compare the convergence behavior of Gauss quadrature with that of its younger brother, Clenshaw–Curtis. Seven-line MATLAB codes are presented that implement both methods, and experiments show that the supposed factor-of-2 advantage of Gauss quadrature is rarely realized. Theorems are given to explain this effect. First, following O’Hara and Smith in the 1960s, the phenomenon is explained as a consequence of aliasing of coefficients in Chebyshev expansions. Then another explanation is offered based on the interpretation of a quadrature formula as a rational approximation of log((z + 1)/(z − 1)) in the complex plane. Gauss quadrature corresponds to Padé approximation at z = ∞. Clenshaw–Curtis quadrature corresponds to an approximation whose order of accuracy at z = ∞ is only half as high, but which is nevertheless equally accurate near [−1, 1].
منابع مشابه
On the Convergence Rates of Gauss and Clenshaw-Curtis Quadrature for Functions of Limited Regularity
We study the optimal general rate of convergence of the n-point quadrature rules of Gauss and Clenshaw–Curtis when applied to functions of limited regularity: if the Chebyshev coefficients decay at a rate O(n−s−1) for some s > 0, Clenshaw–Curtis and Gauss quadrature inherit exactly this rate. The proof (for Gauss, if 0 < s < 2, there is numerical evidence only) is based on work of Curtis, Johns...
متن کاملNyström-Clenshaw-Curtis quadrature for integral equations with discontinuous kernels
A new highly accurate numerical approximation scheme based on a Gauss type Clenshaw-Curtis quadrature for Fredholm integral equations of the second kind
متن کاملQuadrature formula for sampled functions
Abstract—This paper deals with efficient quadrature formulas involving functions that are observed only at fixed sampling points. The approach that we develop is derived from efficient continuous quadrature formulas, such as Gauss-Legendre or Clenshaw-Curtis quadrature. We select nodes at sampling positions that are as close as possible to those of the associated classical quadrature and we upd...
متن کاملA generalization of Filon-Clenshaw-Curtis quadrature for highly oscillatory integrals
The Filon–Clenshaw–Curtis method (FCC) for the computation of highly oscillatory integrals has been proposed by Domı́nguez, Graham and Smyshlayev and is known to attain surprisingly high precision. Yet, for large values of frequency ω it is not competitive with other versions of the Filon method, which use high derivatives at critical points and exhibit high asymptotic order. In this paper we pr...
متن کاملThe kink phenomenon in Fejér and Clenshaw-Curtis quadrature
The Fejér and Clenshaw–Curtis rules for numerical integration exhibit a curious phenomenon when applied to certain analytic functions. When N (the number of points in the integration rule) increases, the error does not decay to zero evenly but does so in two distinct stages. For N less than a critical value, the error behaves like O( −2N ), where is a constant greater than 1. For these values o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Review
دوره 50 شماره
صفحات -
تاریخ انتشار 2008